Supplemental Specification 2005 Standard Specification Book

SECTION 02645

PRECAST CONCRETE BOX AND THREE-SIDED CULVERT STRUCTURES

Delete Section 02645 and replace with the following:

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Material and procedures for fabricating and installing single cell precast concrete box culverts and precast conventionally reinforced concrete three-sided culvert structures.

1.2 RELATED SECTIONS

- A. Section 02056: Common Fill
- B. Section 02317: Structural Excavation
- C. Section 02324: Compaction
- D. Section 03055: Portland Cement Concrete
- E. Section 03211: Reinforcing Steel and Welded Wire
- F. Section 03310: Structural Concrete
- G. Section 03390: Concrete Curing

1.3 REFERENCES

A. AASHTO M 198: Joints for Circular Concrete Sewer and Culvert Pipe Using Flexible Watertight Gaskets

- B. AASHTO LRFD Bridge Design Specifications
- C. ASTM C 877: Standard Specification for External Sealing Bands for Concrete Pipe, Manholes, and Precast Box Sections
- D. ASTM C 1433: Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers
- E. ASTM C 1504: Standard Specification for Manufacture of Precast Reinforced Concrete Three-Sided Structures for Culverts and Storm Drains
- F. UDOT Quality Management Plan

1.4 SUBMITTALS

- A. Shop Drawings: Furnish to the Engineer.
 - 1. Shop drawings: Five half-size 11 inch by 17 inch sheets with a $1\frac{1}{2}$ inch blank margin on the left-hand edge.
 - 2. Design calculations for Precast Concrete Three-Sided Structures signed and stamped by a Utah Professional Engineer (PE).
 - 3. Place the State project designation data in the lower right-hand corner of each sheet.
 - 4. Prepare shop drawings under stamp of a Utah PE.
- B. Department rejects units fabricated prior to written approval.

1.5 ACCEPTANCE

- A. Precast concrete box culverts and three-sided structures may be accepted at a reduced price when the concrete strength is below that specified.
 - 1. Price adjustment pay factor following Section 03310.

PART 2 PRODUCTS

2.1 CONCRETE

- A. Wet Cast Concrete: Class 3A(AE). Follow Section 03055.
- B. Dry Cast Concrete:

1. Minimum cement content: 470 lb/yd³ of concrete

2. Maximum water/cement ratio: 0.40

Precast Concrete Box and Three-Sided Culvert Structures 02645 - Page 2 of 7

2.2 REINFORCING STEEL AND WELDED WIRE

A. Coated. Refer to Section 03211.

2.3 **JOINT SEALANT**

- A. Meet AASHTO M 198.
- B. Use a flexible butyl-blend material with a minimum cross-section of 1 ½ square inches as a joint sealant for box culverts.
- C. Maintain the joint material at 70 degrees F or greater during placement.

2.4 **JOINT WRAP**

A. Refer to ASTM C 877.

2.5 QUALITY ASSURANCE

- A. Department pre-qualifies pre-cast concrete box and three-sided culvert section manufacturers in accordance with the UDOT Quality Management Plan: Pre-cast/Prestressed Concrete Structures.
- B. Permanently mark each precast unit with date of casting and supplier identification. Stamp markings in fresh concrete.
- C. Prevent cracking or damage during handling and storage of precast units.
- D. Replace cracked or damaged precast units at no additional cost to the Department.

PART 3 EXECUTION

3.1 MANUFACTURE

- A. Precast Concrete Box Culverts:
 - 1. Meet ASTM C 1433.
 - 2. Multiply steel reinforcement requirements shown in table by 1.25, unless designed for HS-25 or greater loading.

Precast Concrete Box and Three-Sided Culvert Structures 02645 - Page 3 of 7

- 3. Provide minimum reinforcing steel spacing 4 inches around circumference and 8 inches longitudinal.
- 4. Provide 1 inch minimum concrete cover to reinforcing steel for box sections covered with 2 feet of fill or greater.
- 5. Provide 2 inch minimum concrete cover to all reinforcing steel for box sections covered with less than 2 feet of fill.
- B. Precast Concrete Three-Sided Structures:
 - 1. Meet requirements in ASTM C 1504 with the following exceptions:
 - a. Design structure in compliance with AASHTO LRFD Bridge Design Specifications, Section 12.14.
 - b. Design for HL-93 live loading.
 - 2. Provide minimum reinforcing steel spacing of 4 inches around circumference and 8 inches longitudinal.
 - 3. Provide 1 inch minimum concrete cover to reinforcing steel for three-sided sections covered with 2 feet of fill or greater.
 - 4. Provide 2 inch minimum concrete cover to all reinforcing steel for three-sided sections covered with less than 2 feet of fill.
- C. Portland Cement Concrete: Follow Section 03055.
- D. Concrete Curing: Follow Section 03390.

3.2 PREPARATION

- A. Excavating, Trenching, Bedding, and Backfill:
 - 1. Refer to Section 02317.

3.3 BEDDING AND BACKFILL

- A. Over-excavate the material under the box location in compliance with Section 02317 to a minimum depth of 4 inches.
 - 1. Replace over-excavated material with granular backfill borrow as specified in Section 02056.
 - 2. Provide a minimum bedding of 4 inches of granular backfill borrow.
- B. Level and compact bedding material to provide uniform support of the structure along its entire supported width and length.
- C. Use a loose sand leveling course no greater than 2 inch in depth if needed in addition to the granular backfill borrow bedding.
 - 1. If loose sand is added, excavate the area to the appropriate depth to accommodate the backfill and leveling course.

- D. Backfill structure with granular backfill borrow as specified in Section 02056.
- E. Compact following Section 02324.
- F. Refer to project plans for excavation, bedding, and backfill requirements where a three-sided culvert structure is placed on a footing.

3.4 INSTALLATION

- A. Inspect precast elements for defects before lowering into trench.
- B. Repair or replace any defective, damaged or unsound precast elements.
- C. Use a trench width adequate to place and compact bedding material. Minimum outside width of trench is the outside width of structure plus 2 feet.
- D. Lay precast elements starting at the downstream end.
- E. Carefully lower precast elements into the trench with suitable equipment to prevent damage.
- F. Remove all dirt and foreign material from joints. Prevent dirt and material from re-entering joints.
- G. Apply joint sealant furnished by culvert manufacturer to box culvert.
 - 1. Place the joint material on the bottom half of the groove (bell) of the box last placed.
 - 2. Place the balance of the joint material on the top half of the tongue (spigot) of the box to be set.
 - 3. Place the material about 1 inch from the leading edge of the groove and tongue.
- H. Disassemble joint, check position of joint sealant, repair alignment, and re-install when adjoining elements cannot be pulled together to meet minimum joint requirements.
- I. Close the joints tightly.
- J. Do not disturb previously completed joints during laying operation.
- K. Do not lay precast elements when water is in the trench.
- L. Clean top and sides of concrete surface at joints before placing joint wrap.

- M. Use appropriate pulling devices to avoid misalignment and damage to box sections.
- N. Place three-sided structure sections against previous sections as tightly as possible, while maintaining alignment.
 - 1. Do not exceed joint tolerances in the stamped drawings.

3.5 STEEL REINFORCEMENT

A. Follow Section 03211.

3.6 JOINTS

- A. Make joint opening between box sections less than 1 inch measured face to face of adjoining concrete surfaces.
 - 1. Reject box sections when the installation tolerance cannot be met due to casting variations.
 - 2. Prevent soil from being forced into the joint as the box sections are placed.
- B Provide shear transfer devices for box culvert sections with less than 2 feet of cover.
 - 1. Device or method must be capable of transferring a minimum shear load of 3,000 lbs/ft of joint width through top slab of adjacent units.
 - 2. When using individual devices, space closer than 2.5 ft center to center with a minimum of two per joint.
- C. Mechanically connect the exterior segments of three-sided precast concrete structures at all top joints within a minimum length of 12 feet from each end of the structure.
 - 1. Use a minimum of four mechanical connections per joint with a maximum spacing of 10 feet.
 - 2. Galvanize all plates, shapes and hardware.
- D. Connect three-sided precast concrete structures to the footing/pedestal 2 feet from the outermost exterior edge of the structure at all four corners with a galvanized rigid mechanical connection.
 - 1. Locate the connection on the interior face of the segment to allow for future inspection.

3.7 LIFTING HOLES

- A. Provide a maximum of four lifting holes in the top slab, each having a maximum diameter of 3 inches.
- B. Locate holes to avoid interference with the reinforcing steel.
- C. Plug lift holes and lift insert recesses with a 1/1 sand to cement grout. Finish flush with all concrete surfaces.

3.8 CONNECTION TO CAST-IN-PLACE CONCRETE

A. Where precast box sections join cast-in-place concrete, project the reinforcing steel a minimum of 12 inches out of the precast box section and square off the concrete face.

3.9 REPAIRS

- A. Box sections may be repaired as allowed in the referenced specification only when approved in advance by the Engineer.
- B. Making repairs in advance of approval will be cause for rejection.

3.10 MINIMUM LENGTH

A. Do not use pre-cast segments less than 5 foot in lay length.

END OF SECTION